US009280345B2

a2 United States Patent

Takamura

(10) Patent No.: US 9,280,345 B2
(45) Date of Patent: Mar. 8, 2016

(54)

(735)
(73)

")

@

(22)

(65)

(30)

(1)

(52)

(58)

(56)

PIPELINE PROCESSOR INCLUDING LAST
INSTRUCTION

Inventor: Akihiro Takamura, Fuchu (JP)

Assignee: Canon Kabushiki Kaisha, Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 592 days.

Appl. No.: 13/193,540

Filed: Jul. 28, 2011

Prior Publication Data

US 2012/0054473 Al Mar. 1, 2012

Foreign Application Priority Data

Sep.1,2010 (IP) oo 2010-196090

Int. CL.
GO6F 9/30 (2006.01)
GO6F 9/38 (2006.01)
U.S. CL
CPC GO6F 9/30076 (2013.01); GO6F 9/30185
(2013.01); GOGF 9/3826 (2013.01); GO6F
9/3832 (2013.01); GOG6F 9/3859 (2013.01);
GO6F 9/3869 (2013.01)
Field of Classification Search
CPC e GOGF 9/3826
USPC e 712/218
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,292,884 B1* 9/2001 Tranetal. 712/216

2001/0004755 Al* 6/2001 Levyetal. 712/217
2010/0169610 Al 7/2010 Fukaietal. 712/200
2010/0199074 Al* 8/2010 Gemmekeetal. 712/220

201 152 153

FOREIGN PATENT DOCUMENTS

WO 2007/083421 7/2007

OTHER PUBLICATIONS

Takamura, Hiroshi, Koji Inoue, and Vasily G. Moshnyaga. “Register
file energy reduction by operand data reuse” Integrated Circuit
Design. Power and Timing Modeling, Optimization and Simulation.
Springer Berlin Heidelberg, 2002. 278-288.*

H. Takamura, et al., “Reducing Power Consumption of Register Files

through Operand Reuse”, Information Processing Society of Japan,
pp. 13-18, (Aug. 22, 2002) (with English Abstract).

* cited by examiner

Primary Examiner — Andrew Caldwell

Assistant Examiner — Keith Nielsen

(74) Attorney, Agent, or Firm — Fitzpatrick, Cella, Harper &
Scinto

(57) ABSTRACT

There is provided a processor comprising a plurality of reg-
isters, an acquisition unit, a calculation unit, a pipeline regis-
ter, and a storage unit, wherein in a case in which a register
indicated by source register information included in a second
instruction and a register indicated by destination register
information included in a first instruction match, and the
second instruction or an instruction that precedes to the sec-
ond instruction designates the second instruction as the last
instruction that uses the calculated value obtained in accor-
dance with the first instruction, the storage unit does not store
the calculated value stored in the pipeline register in a register
indicated by destination register information included in the
first instruction, and stores, in other cases, the calculated
value stored in the pipeline register in the register indicated by
the destination register information included in the first
instruction.

14 Claims, 3 Drawing Sheets

103

m o [o5T] INSTRUCTION DECCDER 151 154 ‘

INSTRUCTION
REGSTER
oreRaD rormonG |, 287 [B7 U
| APPARATUS, 111 134
e — 1520 104
s
Nsza LN/ CANCEL CONTROL
s APPARATUS
131a] | 131b| 144
e [PeHEm| TR
132d
.| \ 141b|
SEC i é‘{
173 d1c | [141d
17172 |jfiza| 175] 4
OS] ILATION
il BT
; 176
109

186498

202

U.S. Patent Mar. 8, 2016 Sheet 1 of 3 US 9,280,345 B2

FIG. 1
INSTRUCTION FETCH UNIT 203
A
201 202

INSTRUCTION EXECUTION UNIT 204

U.S. Patent

Mar. 8, 2016 Sheet 2 of 3 US 9,280,345 B2
~201 152 183 P
101 || op ||D§T| INSTRUCTION DECODER 154
_ {
INSTRdCTION 02
REGISTER 121a 121b REG'S,IEE [FIsRc1] [FISRC2]
SEL1 SEL2
122 (123 135
1361 (137
OPERAND FORWARDING
apParaTUs — 11 ~134
1 104
= —1132b {
132a CANCEL CONTROL
MUX IZMUX APPARATUS
131a 131b 1454 | _
142 Ma{cR]| R
132d /
. 141b
132¢
MUX MUX
131c143| 131d|145 |
~138 (139 ICLRL ICLRL
\
173 | \ 106 141¢ | |141d
171172)174 175 107
e D | CALCULATION
LoP | [VITIW[DST] VAL | APPARATUS
176
177
109 +
§ [y— 110
MEMORY
CONTROLLER | MEMORY] 1202
— |
[oP] [VITIW[DST] VAL |
7 7 i LY 5
181 182 183/184(185 1861803
CANCEL
187 - PERFORMING UNIT

U.S. Patent Mar. 8, 2016 Sheet 3 of 3 US 9,280,345 B2

201 152 153 e
)])]
101 Hop 1[osT] INSTRUCTION DECODER 454 1?4
INSTRL(JCTION <102 _F(’L
SELT SEL2 FILE
122 (123 135
136 137
OPERAND FORWARDING
APPARATUS ~111 ~134
' 104
— —1+132b (
132a CANCEL CONTROL
wa IeMUX : APPARATUS
131a 131b| 144 _ .
142 [1¥1a{cR]| |[cR]
132d
: 141b
V132¢
MUX MUX
131cl143| 131d|145 |
\ 138 139 |CL3L ICLQL
173 | \ 106 141c | [141d
171/172| | J[174 175 107
S 2 | GALCULATION
LOP JIVITIWIDSTL VAL_| | | “AppARATUS
176
177
109 1=
§ I:y— 110
MEMORY
CONTROLLER MEMORY| | 202
|
[oP] [VITIW[DST] VAL]
7 A taiD ’
181 182 1831184185 |186 108
CANCEL
187 - PERFORMING UNIT

US 9,280,345 B2

1
PIPELINE PROCESSOR INCLUDING LAST
INSTRUCTION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to technology for realizing a
processor that has low power consumption and uses a pipeline
processing system.

2. Description of the Related Art

Generally, a pipeline processing system is used in order to
enhance the processing performance of a processor. In a
processor using a pipeline processing system, when a source
operand value necessary for execution of an instruction is to
be acquired, if the newest source operand value exists in a
pipeline, that value existing in the pipeline is acquired, rather
than a value that exists in a register file. This is called “oper-
and forwarding” or “operand bypassing”. In this way, before
a calculated value obtained in accordance with a preceding
instruction is written in the register file, a next instruction can
be executed using the newly calculated value.

It is not necessary to read out a value from the register file
when operand forwarding is performed. Further, if it is known
that a calculated value is operand-forwarded, and does not
need to be read out after that, it is not necessary to write that
calculated value in the register file. It is possible to reduce the
power consumption of a processor by reducing reading/writ-
ing of a value from/to the register file.

According to a method disclosed in Non-Patent Document
1 (“Reducing Power Consumption of Register Files through
Operand Reuse”, Information Processing Society of Japan
Research Report, Computer Architecture Research Group
Report 2002(81), Aug. 22, 2002: pp. 13-18), a case is detected
in which a destination register for a preceding instruction and
a source operand register and a destination register for a
succeeding instruction match. In this case, a calculated value
obtained in accordance with the preceding instruction is oper-
and-forwarded to the succeeding instruction. Moreover, a
register value is updated in accordance with the succeeding
instruction, and thus the calculated value obtained in accor-
dance with the preceding instruction will not be read out after
that. Specifically, the succeeding instruction designates that
the calculated value obtained in accordance with the preced-
ing instruction will no longer be read out. Accordingly, the
calculated value obtained in accordance with the preceding
instruction does not need to be stored in the register file.

According to a method in Patent Document 1 (Interna-
tional Publication WO 2007/083421), when a calculated
value obtained in accordance with a preceding instruction is
operand-forwarded, it is defined in the preceding instruction
whether or not that calculated value obtained in accordance
with the preceding instruction is stored in a register file.
Specifically, the preceding instruction designates that the cal-
culated value obtained in accordance with that instruction
will no longer be read out after operand forwarding.

According to the method in Non-Patent Document 1, if a
succeeding instruction designates both a destination register
and a source operand register, it can be designated that a
calculated value obtained in accordance with a preceding
instruction will no longer be read out. Accordingly, if the
succeeding instruction is an instruction that does not desig-
nate a destination register, such as a compare instruction, a
store instruction to a memory, or a branch instruction, it
cannot be designated that a calculated value obtained in
accordance with the preceding instruction will no longer be
read out.

10

15

20

25

30

35

40

45

50

55

60

65

2

If a calculated value obtained in accordance with a preced-
ing instruction is operand-forwarded to two or more succeed-
ing instructions, it is not possible to omit the storing of that
calculated value in a register file unless it is confirmed that the
last operand forwarding has succeeded. However, a method
of enabling this is not disclosed in International Publication
WO 2007/083421. Further, in the method in International
Publication WO 2007/083421, whether or not the writing to a
register file is necessary is indicated in each preceding
instruction. Thus, according to the method in International
Publication WO 2007/083421, an average instruction bit
length and the program size are increased, and power con-
sumption is also increased.

SUMMARY OF THE INVENTION

The present invention provides a processor that can be
operated using a program having a smaller size, and which
requires lower power consumption.

According to one aspect of the invention, a processor that
performs pipeline processing on an instruction comprises: a
plurality of registers configured to store a result obtained by
executing an instruction; an acquisition unit configured to
acquire an instruction; a calculation unit configured to
acquire a calculated value by performing calculation, wherein
the calculation is designated by an operation code designating
a type of processing, which operation code is included in the
instruction acquired by the acquisition unit, and wherein the
calculation uses an operand acquired in accordance with
source register information designating a register that stores
the operand used for calculation, which source register infor-
mation is included in the instruction acquired by the acquisi-
tion unit, and that designates; a pipeline register that stores the
calculated value obtained by the calculation unit; and a stor-
age unit that stores, in accordance with destination register
information designating a register that is to store the calcu-
lated value, which destination register information is
included in the instruction acquired by the acquisition unit,
the calculated value stored in the pipeline register in the
designated register, wherein in a case in which a first instruc-
tion including the destination register information that desig-
nates a register that is to store the calculated value, and a
second instruction that does not include the destination reg-
ister information, are input to the processor, and a calculated
value obtained in accordance with the first instruction is
stored in the pipeline register when the calculation unit per-
forms calculation in accordance with the second instruction,
if a register indicated by the source register information
included in the second instruction and a register indicated by
the destination register information included in the first
instruction match, the calculation unit acquires the calculated
value stored in the pipeline register as an operand used for the
second instruction, and in a case in which the register indi-
cated by the source register information included in the sec-
ond instruction and the register indicated by the destination
register information included in the first instruction match,
and the second instruction or an instruction that precedes to
the second instruction designates the second instruction as the
last instruction that uses the calculated value obtained in
accordance with the first instruction, the storage unit does not
store the calculated value stored in the pipeline register in the
register indicated by the destination register information
included in the first instruction, and stores, in other cases, the
calculated value stored in the pipeline register in the register
indicated by the destination register information included in
the first instruction.

US 9,280,345 B2

3

According to the above aspect of the invention, a processor
can be operated using a program having a smaller size and
requires lower power consumption.

Further features of the present invention will become
apparent from the following description of exemplary
embodiments with reference to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram showing the overall configuration of a
processor according to Embodiment 1.

FIG. 2 is a diagram showing an instruction execution unit
according to Embodiment 1.

FIG. 3 is a diagram showing an instruction execution unit
according to Embodiment 3.

DESCRIPTION OF THE EMBODIMENTS
Embodiment 1

In the present embodiment, in a case in which a plurality of
registers exist as in a case of using general registers in a
processor, each register is identified using a register number.
Valid registers 172 and 182, Temp registers 173 and 183, and
control registers 174 and 184 have 0 or 1 as a value. These
registers have 1 as a value in a set state. Further, these registers
have 0 as a value in a clear state.

FIG. 1 shows an example of a processor according to the
present embodiment. The processor according to the present
embodiment can perform pipeline processing on an input
instruction. The processor according to the present embodi-
ment includes an instruction fetch unit 203 and an instruction
execution unit 204. The instruction fetch unit 203 fetches an
instruction (acquisition unit). Then, the instruction fetch unit
203 sends the fetched instruction to the instruction execution
unit 204 as instruction information 201. The instruction
execution unit 204 executes the received instruction. If the
instruction execution unit 204 executes a branch instruction,
the instruction execution unit 204 sends a new instruction
fetch address to the instruction fetch unit 203 as branching
information 202.

FIG. 2 shows an example of the instruction execution unit
204 according to the present embodiment. In the present
embodiment, processing performed by the instruction execu-
tion unit 204 is divided into a calculation stage, a memory
stage, and a register file writing stage. Even if processing
performed by the instruction execution unit 204 is divided
into stages using a different method, those skilled in the art
will be able to modify the present embodiment and utilize the
modified embodiment. Further, it is assumed that pipeline
stall will not occur in the present embodiment in order to
simplify a description. However, those skilled in the art will
be able to incorporate an existing method for handling pipe-
line stall into the present embodiment.

An instruction register 101 receives the instruction infor-
mation 201 from the instruction fetch unit 203. Then, the
instruction register 101 stores the instruction information
201. It is possible to acquire an operation code, destination
register information, and source operand register information
(source register information) from the instruction informa-
tion 201. In the present embodiment, it is possible to further
acquire, from the instruction information 201, information
that indicates whether or not a value stored in a source oper-
and register will be referred to again after the instruction is
executed.

If a new instruction is stored in the instruction register 101,
an instruction decoder 103 decodes that instruction stored in

10

15

20

25

30

35

40

45

50

55

60

65

4

the instruction register 101. The instruction decoder 103
includes an operation code decoder 152, a destination register
decoder 153, and a source register decoder 154.

The operation code decoder 152 decodes an operation code
in an instruction. An operation code specifies the type of
instruction. Moreover, the operation code decoder 152 out-
puts a calculation control signal to a calculation apparatus
106. For example, if an instruction stored in the instruction
register 101 is an add instruction, a subtract instruction, or an
AND instruction, the operation code decoder 152 causes the
calculation apparatus 106 to perform addition, subtraction, or
AND calculation by outputting a calculation control signal to
the calculation apparatus.

Further, the result of processing performed by the opera-
tion code decoder 152 is stored in an operation code register
171, the Valid register 172, and the Temp register 173 in a first
pipeline register 107. The operation code decoder 152 calcu-
lates an operation code necessary at the memory stage based
on the content of the instruction register 101. Then, the opera-
tion code decoder 152 sets the calculated operation code in
the operation code register 171. Moreover, the operation code
decoder 152 sets the Valid register 172 if the instruction in the
instruction register 101 is valid.

The operation code decoder 152 determines whether or not
data to be written to a register file will be defined at the
calculation stage based on the content of the instruction reg-
ister 101. If such data will be defined, the operation code
decoder 152 sets the control register 174 and clears the Temp
register 173. On the contrary, if data to be written to the
register file will not be defined at the calculation stage, the
operation code decoder 152 sets the Temp register 173 and
clears the control register 174.

Assume a case in which an AND instruction is stored in the
instruction register 101, for example. In this case, data to be
written into the register file is defined by calculation per-
formed by the calculation apparatus 106 at the calculation
stage. Accordingly, in this case, the operation code decoder
152 sets the control register 174 and clears the Temp register
173.

On the other hand, assume a case in which a load instruc-
tion is stored in the instruction register 101. In this case, the
calculation apparatus 106 calculates a memory address used
at the time of loading. Specifically, data to be written into the
register file is not defined at the calculation stage. On the other
hand, data to be written into the register file is defined at the
memory stage. Accordingly, in this case, the operation code
decoder 152 clears the control register 174 and sets the Temp
register 173.

The destination register decoder 153 calculates the register
number of a register into which a processing result is written,
based on the value in the instruction register 101. Then, the
destination register decoder 153 stores that calculated register
number in a destination register 175.

The source register decoder 154 calculates a register num-
ber 134 for a first source operand based on the value in the
instruction register 101, and outputs that calculated register
number. Further, the source register decoder 154 determines
whether or not the first source operand will be acquired again
after an instruction is executed. In other words, the source
register decoder 154 determines whether or not the register
indicated by the register number 134 is to be referred to again
after the execution of the instruction indicated by the instruc-
tion information 201 and before the value in the register
indicated by the register number 134 is updated. Whether or
not the first source operand is to be acquired again after the

US 9,280,345 B2

5

instruction is executed is indicated in the instruction informa-
tion 201, and can be decrypted by the source register decoder
154.

If the register will not be referred to, the source register
decoder 154 outputs a holding-unnecessary signal 136. Simi-
larly, for a second source operand, the source register decoder
154 outputs a register number 135 and a holding-unnecessary
signal 137 with regard to the second source operand.

A register file 102 receives the register number 134 for the
first source operand, and outputs a corresponding register
value 122. Similarly, the register file 102 receives the register
number 135 for the second source operand, and outputs a
corresponding register value 123. An operand forwarding
apparatus 111 selects one value from among the register value
122, a value stored in a data register 176, and a value stored in
a data register 186. Then, the operand forwarding apparatus
111 outputs the selected value to the calculation apparatus
106 as a first source operand 138. Further, the operand for-
warding apparatus 111 selects one value from among the
register value 123, a value stored in the data register 176, and
avalue stored in the data register 186, and outputs the selected
value to the calculation apparatus 106 as a second source
operand 139. Processing performed by the operand forward-
ing apparatus 111 will be described below.

The calculation apparatus 106 performs calculation
according to the first source operand 138, the second source
operand 139, and the calculation control signal output by the
operation code decoder 152 (calculation unit). Then, the cal-
culation apparatus 106 stores the calculation result in the data
register 176. The first pipeline register 107 includes the opera-
tion code register 171, the Valid register 172, the Temp reg-
ister 173, and the control register 174. These registers 171 to
174 store data from the operation code decoder 152.

The first pipeline register 107 further includes the destina-
tion register 175 and the data register 176. The destination
register 175 stores data from the destination register decoder
153. The data register 176 stores the calculation result
obtained by the calculation apparatus 106.

The operation code register 171 holds an operation code.
The Valid register 172 holds a value indicating whether or not
an instruction in the instruction register 101 is valid. The
Temp register 173 holds a value indicating whether or not data
to be written into the register file has been defined. The
control register 174 holds a value indicating whether or not
the value stored in the data register 176 needs to be written
into the register file.

A memory controller 109 refers to the value stored in the
operation code register 171 in the first pipeline register 107.
The memory controller 109 outputs a control signal to a
memory 110 in accordance with the value that has been
referred to. Further, the memory controller 109 outputs a
value to be stored in the Valid register 182, the Temp register
183, and the control register 184 in accordance with the value
that has been referred to.

When the operation code stored in the operation code reg-
ister 171 indicates a load instruction or a store instruction, the
memory controller 109 outputs a memory control signal to
the memory 110, and causes the memory 110 to perform
reading or writing. If the operation code stored in the opera-
tion code register 171 indicates an instruction other than
those, the memory controller 109 outputs a memory control
signal to the memory 110, and causes the memory to output
an input to the memory 110 from the data register 176 as it is.

The memory controller 109 sets the content of the Valid
register 172 in the Valid register 182. Further, if a load instruc-
tion is stored in the operation code register 171, data to be
written into the register file is defined by the reading from the

5

10

20

25

30

40

45

55

60

65

6

memory 110. Accordingly, ifa load instruction is stored in the
operation code register 171, the memory controller 109 clears
the Temp register 183 and sets the control register 184.

On the other hand, if an instruction other than a load
instruction is stored in the operation code register 171, the
memory controller 109 sets the content of the Temp register
173 in the Temp register 183. Further, the memory controller
109 sets a value from a cancel performing unit 177 in the
control register 184. The cancel performing unit 177 will be
described below. The memory 110 performs a reading opera-
tion, a writing operation, or an operation of outputting the
value in the data register 176 as it is, based on the memory
control signal output by the memory controller 109. Then, the
memory 110 outputs the result to the data register 186.

A second pipeline register 108 includes an operation code
register 181, the Valid register 182, the Temp register 183, and
the control register 184. These registers 181 to 184 store a
value output by the memory controller 109. Further, the sec-
ond pipeline register 108 includes a destination register 185
and the data register 186. The destination register 185 stores
the same value as that in the destination register 175. The data
register 186 stores a value from the memory 110.

The registers 181 to 186 store the same information as that
in the registers 171 to 176 in the first pipeline register 107. A
cancel performing unit 187 controls the writing of data in the
data register 186 into the register file 102 based on the value
in the control register 184 and the value from a cancel control
apparatus 104. Processing performed by the cancel perform-
ing unit will be described below.

Next is a description of the operand forwarding apparatus
111. The operand forwarding apparatus 111 determines
whether or not the register number 134 for the first source
operand output from the source register decoder 154 matches
the destination register 175 or 185. In the present embodi-
ment, the operand forwarding apparatus 111 performs deter-
mination first with respect to the destination register 175 for
an instruction that has been decoded most recently.

In the present embodiment, the operand forwarding appa-
ratus 111 (132¢) determines whether or not the register num-
ber 134 for the first source operand indicate the same register
as the destination register 175 in the first pipeline register 107.
If the registers are the same, the operand forwarding appara-
tus 111 (131c¢) outputs the value stored in the data register 176
in the first pipeline register to the calculation apparatus 106,
as the first source operand 138. Further, the operand forward-
ing apparatus 111 (132¢) outputs, to the cancel control appa-
ratus 104, a signal 143 indicating that the value stored in the
data register 176 in the first pipeline register has been for-
warded.

Next is a description of a case in which the register number
134 for the first source operand indicates a register different
from the destination register 175 in the first pipeline register
107. In this case, the operand forwarding apparatus 111
(132a) determines whether or not the register number 134 for
the first source operand indicates the same register as the
destination register 185 in the second pipeline register. If the
registers are the same, the operand forwarding apparatus 111
(131a) outputs the value stored in the data register 186 in the
second pipeline register to the calculation apparatus 106 (via
131c), as the first source operand 138. Further, the operand
forwarding apparatus 111 (1324) outputs, to the cancel con-
trol apparatus 104, a signal 142 indicating that the value
stored in the data register 186 in the second pipeline register
has been forwarded.

Next is a description of a case in which the register number
134 for the first source operand indicates a register different
from both the destination register 175 in the first pipeline

US 9,280,345 B2

7

register 107 and the destination register 185 in the second
pipeline register 108. In this case, the operand forwarding
apparatus 111 (131a, 131c¢) outputs the register value 122
read out from the register file 102 in accordance with the
register number 134 for the first source operand, as the first
source operand 138.

The operand forwarding apparatus 111 also performs the
same processing on the second source operand. Specifically,
the operand forwarding apparatus 111 (132d) determines
whether or not the register number 135 for the second source
operand indicates the same register as the destination register
175 in the first pipeline register 107. If the registers are the
same, the operand forwarding apparatus 111 (1314) outputs,
to the calculation apparatus 106, the value stored in the data
register 176 in the first pipeline register, as the second source
operand 139. Further, the operand forwarding apparatus 111
(1324) outputs, to the cancel control apparatus 104, a signal
145 indicating that the value stored in the data register 176 in
the first pipeline register has been forwarded.

Next is a description of a case in which the register number
135 for the second source operand indicates a register differ-
ent from the destination register 175 in the first pipeline
register 107. In this case, the operand forwarding apparatus
111 (1325) determines whether or not the register number 134
for the second source operand indicates the same register as
the destination register 185 in the second pipeline register. If
the registers are the same, the operand forwarding apparatus
111 (1315) outputs the value stored in the data register 186 in
the second pipeline register to the calculation apparatus 106
(via 131d), as the second source operand 139. Further, the
operand forwarding apparatus 111 (1325) outputs, to the can-
cel control apparatus 104, a signal 144 indicating that the
value stored in the data register 186 in the second pipeline
register has been forwarded.

Next is a description of a case in which the register number
135 for the second source operand indicates a register differ-
ent from both the destination register 175 in the first pipeline
register 107 and the destination register 185 in the second
pipeline register 108. In this case, the operand forwarding
apparatus 111 (1315, 1314d) outputs the register value 123
read out from the register file 102 in accordance with the
register number 135 for the second source operand, as the
second source operand 139.

Among the signals output from the operand forwarding
apparatus 111 to the cancel control apparatus 104, the signals
142 and 143 indicate that forwarding has been performed for
the first operand. Similarly, the signals 144 and 145 indicate
that forwarding has been performed for the second operand.
Further, the signals 142 and 144 indicate that data in the
second pipeline register 108 has been forwarded. Similarly,
the signals 143 and 145 indicate that data in the first pipeline
register 107 has been forwarded.

The cancel control apparatus 104 determines whether or
not the holding-unnecessary signals 136 and 137 have been
output from the source register decoder 154. Further, the
cancel control apparatus 104 determines whether or not the
signals 142 to 145 indicating that forwarding has been per-
formed have been output from the operand forwarding appa-
ratus 111. If the signal 136 and the signal 142 or 143, or the
signal 137 and the signal 144 or 145 have been output, the
cancel control apparatus 104 sends a cancel signal to the
cancel performing unit 177 or 187. In this way, the cancel
control apparatus 104 cancels writing of data in the data
registers 176 and 186 into the register file 102.

Next is a description of specific operation of the cancel
control apparatus 104. If the signals 136 and 143 have been
output, data in the data register 176 has been forwarded as the

20

35

40

45

50

8

first source operand. Further, the first source operand (spe-
cifically, data in the data register 176) will not be referred to
thereafter. In this case, the cancel control apparatus 104
(141c¢) sends a cancel signal to the cancel performing unit
177.

Ifthe signals 136 and 142 have been output, data in the data
register 186 has been forwarded as the first source operand.
Further, the first source operand (specifically, data in the data
register 186) will not be referred to thereafter. In this case, the
cancel control apparatus 104 (141a) sends a cancel signal to
the cancel performing unit 187.

Ifthe signals 137 and 145 have been output, data in the data
register 176 has been forwarded as the second source oper-
and. Further, the second source operand (specifically, data in
the data register 176) will not be referred to thereafter. In this
case, the cancel control apparatus 104 (141d) sends a cancel
signal to the cancel performing unit 177.

Ifthe signals 137 and 144 have been output, data in the data
register 186 has been forwarded as the second source oper-
and. Further, the second source operand (specifically, data in
the data register 186) will not be referred to thereafter. In this
case, the cancel control apparatus 104 (1415) sends a cancel
signal to the cancel performing unit 187.

If a cancel signal has not been sent from the cancel control
apparatus 104, the cancel performing unit 177 outputs the
value in the control register 174 to the memory controller 109.
Then, the memory controller 109 sets the received value in the
control register 184. On the other hand, if a cancel signal has
been sent from the cancel control apparatus 104, the cancel
performing unit 177 outputs the value “0” to the memory
controller 109. Then, the memory controller 109 clears the
control register 184.

If a cancel signal has not been sent from the cancel control
apparatus 104, the cancel performing unit 187 outputs the
value in the control register 184. On the other hand, if a cancel
signal has been sent from the cancel control apparatus 104,
the cancel performing unit 187 outputs the value “0”.

At the register file writing stage, if the output from the
cancel performing unit 187 is “1”, the value in the control
register 184 is stored in the register indicated by the value in
the destination register 185 (storage unit). On the other hand,
if the output from the cancel performing unit 187 is “0”,
writing into the register file is not performed. A register file
writing apparatus (not shown) may perform this processing.

By the above operation,

if it is indicated that after the execution of an instruction, a
source operand register for this instruction will not be referred
to again until the value in this source operand register is
updated, and

ifthe source operand for this instruction is forwarded from
a pipeline register by the operand forwarding apparatus,
the source operand (specifically, a value in the data register in
the pipeline register) for this instruction will not be written
into the register file. Accordingly, the writing of unnecessary
data into the register file can be prevented, and thus the power
consumption of the processor can be reduced.

In the present embodiment, the instruction decoder 103 is
capable of acquiring information indicating whether or not
the value stored in a source operand register will be referred
to again after the execution of an instruction. This can be
realized by adding such information to the instruction used to
cause the processor to perform operation. This can be realized
by extending an instruction set, for example.

A CMPX1 instruction will be described as an example, as
an instruction to be added in the present embodiment. The
CMPX1 instruction is basically the same as a CMP instruc-
tion of the Thumb 16-bit instruction set. However, the

US 9,280,345 B2

9

CMPX1 instruction designates that, after a value in a register
indicated by the first source operand has been read out, that
register value will not be read out until next writing to that
register is performed. The source register decoder 154 outputs
the holding-unnecessary signal 136, upon receipt of the
CMPX1 instruction.

As described above, according to the present embodiment,
even an instruction (second instruction) that does not desig-
nate a destination register, such as a compare instruction
(CMP instruction), can designate that a calculated value
obtained in accordance with a preceding instruction will no
longer be read out. Further, if a calculated value obtained in
accordance with a preceding instruction (first instruction) is
read out according to a plurality of succeeding instructions, it
is possible to realize a configuration in which operand for-
warding is performed a plurality of times by the last instruc-
tion designating that the calculated value obtained in accor-
dance with the preceding instruction will no longer be read
out.

Embodiment 2

The method in Embodiment 1 is combined with the method
in Non-Patent Document 1 in the present embodiment.
According to the method in Non-Patent Document 1, if a
succeeding instruction (third instruction) designates both a
destination register and a source operand register, it can be
designated that a value in that source operand register will no
longer be read out. On the other hand, according to the
method in Embodiment 1, even in a case in which a destina-
tion register is not designated in a succeeding instruction, it
can be designated that a value in the source operand register
will no longer be read out.

Thus, in the present embodiment, in an instruction that
does not designate a destination register, an instruction set is
extended such that it can be designated that a value in the
source operand register will no longer be read out. However,
in order to satisfy a function call restriction, a value may need
to be stored in a specific destination register. Accordingly, an
instruction set may be extended such that an add instruction
and a move instruction between registers can designate that
the value in the source operand register will no longer be read
out. In Table 1 below, an instruction set has also been
extended with regard to a move instruction between registers.

Table 1 shows the numbers of added instruction types in
conventional technology and the present invention using the
Thumb® 16-bit instruction set by ARM Ltd. as an example.
In Table 1, an instruction in which a source operand is an
immediate operand and an instruction in which a source oper-
and is not an immediate operand are counted as other instruc-
tions even if the same instruction mnemonic is used therefor.
Similarly, an instruction that designates a register that is not a
general register such as a PC or SP register for a source
operand and an instruction that does not designate such a
register are counted as other instructions even if the same
instruction mnemonic is used therefor. Note that in load/store
instructions that designate a plurality of registers and a push
instruction and a pop instruction, a plurality of registers are
designated and multicycle operation is performed. Thus,
these instructions are excluded from Table 1.

The numbers of instruction types added in the case of the
method disclosed in Patent Document 1 are shown as the
numbers of instruction types added in conventional technol-
ogy. By adding instruction types whose numbers are shown in
Table 1 in accordance with the method in Patent Document 1,
it can be designated that a calculated value obtained in accor-
dance with a preceding instruction will not be written in the

10

15

20

25

30

35

40

45

50

55

60

65

10

register file if that calculated value is operand-forwarded
once. In order to designate that a calculated value will not be
written if that calculated value is operand-forwarded twice or
more, it is necessary to further add instruction types.

By adding the instruction types whose numbers are shown
in Table 1 in accordance with the present embodiment, it can
be designated that the first source operand will not be written
into the register file if the value thereof can be acquired by
operand forwarding. In a case in which it is to be designated
that the second source operand will not be written into the
register file if the value thereof can be acquired by operand
forwarding, instruction types can be further added.

TABLE 1
Number
Number of of
added added
Number of instruction instruc
instruction types tion
Mnemonics of types (WO types
Instruction Thumb 16-bit (Thumb 16- 2007/ (Embodi-
type instruction bit) 083421) ment 2)
Move MOVS, MOV 4 4 4
Add ADDS, ADDD, 8 8 0
ADC, ADR
Subtract SUBS, SBCS, 6 6 0
SUB, RSBS
Multiply MULS 1 1 0
Compare CMP, CMN 3 0 3
Logical ANDS, EORS, 6 6 1
calculation ORRS, BICS,
MVNS, TST
Shift/Rotate LSLS, LSRS, 7 7 0
ASRS, RORS
Load LDR, LDRH, 10 10 0
LDRB, LDRH,
LDRSH, LDRB,
LDRSB
Store STR, STRH, 7 0 7
STRB
Bit SXTH, SXTB, 4 4 0
extension UXTH, UXTB
Bit reverse REV, REV16, 3 3 0
REVSH
Total number 48 14
of added
instructions

Among six logical calculation instructions, the TST
instruction does not allow a result to remain in a register, and
thus an instruction corresponding to the TST instruction is
added in accordance with the present embodiment. As shown
in Table 1, according to the method in the present embodi-
ment, the number of added instruction types can be
decreased, compared to the case of using the method
described in Patent Document 1. For example, according to
the method in Patent Document 1, it is necessary to add 48
instructions to the Thumb 16-bit instruction set. On the other
hand, it is sufficient to add 14 instructions according to the
method in the present embodiment. Accordingly, an increase
in an average instruction bit length and an increase in the
program size can be suppressed. Thus, power consumption is
reduced.

Below is a description of operation of the source register
decoder 154 using the instruction set shown in Table 1. As
described above, the source register decoder 154 outputs the
holding-unnecessary signal 136 if it is determined that the
value in a register that stores the first source operand will no
longer be acquired until that value is updated. Moreover, the
source register decoder 154 having the function disclosed in

US 9,280,345 B2

11

Non-Patent Document 1 determines whether the destination
register number and the register number for the first source
operand match. If the numbers match, the source register
decoder 154 determines that the value in the register that
stores the first source operand will no longer be acquired until
that value is updated, and outputs the holding-unnecessary
signal 136.

For example, an instruction, namely, ADDS R1, R1,
#<imm> will be described. In this instruction, the register R1
is designated as both the destination register and the first
source operand register. Accordingly, the register R1 will not
be referred to until the value in the register R1 is changed in
response to this instruction. Specifically, ina case in which R1
is designated as the destination register in a preceding instruc-
tion, and a calculated value obtained in accordance with the
preceding instruction is operand-forwarded, the calculated
value obtained in accordance with the preceding instruction
will no longer be referred to, and thus this calculated value
does not need to be stored in the register R1. Accordingly, in
this case, the source register decoder 154 outputs the holding-
unnecessary signal 136 for the first source operand.

On the other hand, according to an instruction, namely,
ADDS R2, R1, #<imm>, the register R1 serving as the first
source operand register is not updated. Accordingly, the value
in the register R1 may be referred to again in a succeeding
instruction. Therefore, the holding-unnecessary signal 136
for the first source operand is not output in this case. If the
register R1 serving as the first source operand register is not
referred to until the value is updated, it is sufficient to rewrite
the program to ADDS R1, R1, #<imm>.

Embodiment 3

In Embodiment 1, an instruction specifies that until the
value in a source operand register for this instruction is
updated, this source operand register will not be referred to
again. For this reason, new versions of some instructions were
added to the instruction set. In the present embodiment, a
prefix instruction is added to the instruction set. This prefix
instruction specifies that until a value in a source operand
register for an instruction to be executed next is updated, this
source operand register will not be referred to again.

In the present embodiment, an instruction (prefix instruc-
tion) indicating that until a value in a first source operand
register for an instruction to be executed next is updated,
reading out therefrom will not be performed is added to the
conventional instruction set. In the description below, this
instruction serves as a LASTUSEL instruction. Below is a
description of a case in which this LASTUSE]1 instruction is
used together with the CMP instruction of the Thumb 16-bit
instruction set.

The LASTUSE] instruction can be used in an instruction
sequence below, for example.

MOVS 1, #255

LASTUSE1

CMPrl, 12

In this instruction sequence, the LASTUSEL1 instruction
indicates that a value in the rl register serving as the first
source operand register for the CMP instruction to be
executed after the LASTUSE] instruction will not be read out
until that value is updated after the CMP instruction. The
value 255 is set in the register r1 according to the first MOVS
instruction. Then, 255 that is the value in the register r1 is used
in the CMP instruction. However, the LASTUSE1 instruction
specifies that 255 that is the value in the register r1 will not be

10

15

20

25

30

35

40

45

50

55

60

65

12

used after the CMP instruction. Accordingly, if the value 255
is operand-forwarded, the value 255 does not need to be
written into the register rl.

FIG. 3 shows an example of an instruction execution unit of
aprocessor according to the present embodiment. The present
embodiment is similar to Embodiment 1. Below is a descrip-
tion of the differences from Embodiment 1. As in Embodi-
ment 2, it is also possible to combine the method in Non-
Patent Document 1 with that in the present embodiment. In
the present embodiment, the source register decoder 154 has
an instruction storage register 151.

When the instruction decoder 103 receives the LASTUSE1
instruction, the source register decoder 154 under instruction
sets the instruction storage register 151. If the LASTUSE1
instruction is received, the instruction decoder 103 does not
need to send information to the units in the processor such as
the calculation apparatus 106 and the first pipeline register
107.

If the instruction decoder 103 receives an instruction sub-
sequent to the LASTUSE1 instruction, the instruction
decoder 103 decodes that instruction. Then, the instruction
decoder 103 sends information to the units in the processor.
At this time, the source register decoder 154 determines
whether or not the instruction storage register 151 has been
set.

If the instruction storage register 151 has been set, the
source register decoder 154 outputs the holding-unnecessary
signal 136 together with the register number 134 for the first
source operand. Then, the source register decoder 154 clears
the instruction storage register 151. If the instruction storage
register 151 has not been set, the source register decoder 154
outputs the register number 134 for the first source operand,
but does not output the holding-unnecessary signal 136.

Thus, in the present embodiment, it is possible to achieve
suppressing an increase in the program size and reducing
power consumption by adding one prefix instruction. In the
present embodiment, an instruction has been added that
specifies that the first source operand register will not be
referred to again until a value in this source operand register
for the instruction subsequent to the added instruction is
updated. However, it is also possible to further add an instruc-
tion specifying that, with regard to a register other than the
first source operand register, that register will not be referred
to again until a value in that register is updated.

While the present invention has been described with refer-
ence to exemplary embodiments, it is to be understood that
the invention is not limited to the disclosed exemplary
embodiments. The scope of the following claims is to be
accorded the broadest interpretation so as to encompass all
such modifications and equivalent structures and functions.

This application claims the benefit of Japanese Patent
Application No. 2010-196090, filed Sep. 1, 2010, which is
hereby incorporated by reference herein in its entirety.

What is claimed is:

1. A processor that performs pipeline processing on an

instruction, the processor comprising:

an acquisition unit constructed to acquire the instruction
which has an operation code specifying a type of the
instruction and destination register information;

a pipeline register constructed to store a processing result
based on the instruction acquired by the acquisition unit;
and

a storage control unit constructed to control a register to
store the processing result stored in the pipeline register,
wherein the register which stores the processing result is
designated by the destination register information; and

US 9,280,345 B2

13

a control unit constructed to control processing based on a
second instruction acquired by the acquisition unit and
control storing of a processing result based on a first
instruction acquired by the acquisition unit, wherein the
control unit is further constructed to:

determine whether both of conditions (i)-(ii) are satisfied
(1) the second instruction indicates that the second
instruction is for performing processing by using data
stored in the register designated by the destination reg-
ister information in the first instruction, and (ii) the
operation code in the instruction acquired by the acqui-
sition unit indicates that the second instruction is a last
instruction for performing the processing by using data
stored in the register designated by the destination reg-
ister information in the first instruction; and
in response to determining that both of conditions (1)-(ii)

are satisfied, control the processing and the storing
such that data used for the processing based on the
second instruction is acquired from the pipeline reg-
ister and the processing result based on the first
instruction is not stored in the register designated by
the destination register information in the first instruc-
tion,

wherein whether to store the processing result based on the
first instruction is determined based on an indication
associated with the second instruction.

2. The processor according to claim 1, wherein the instruc-
tion acquired by the acquisition unit includes an operation
code corresponding to a type of instruction, and the processor
further comprises a processing unit constructed to perform
the processing corresponding to the operation code included
in the instruction acquired by the acquisition unit.

3. The processor according to claim 1, wherein the second
instruction includes the register reference information indi-
cating that the second instruction is the last instruction for
performing the processing by using the data stored in the
register designated by the destination register information in
the first instruction.

4. The processor according to claim 1, wherein the control
unit is further constructed to acquire first data from the pipe-
line register and second data from a register designated by a
second operand, when the second instruction includes a first
operand designating a register in which the first data used for
the processing based on the second instruction is stored, the
second instruction includes a second operand designating a
register in which second data used for the processing based on
the second instruction is stored, a register designated by the
first operand and a register designated by the destination
register information in the first instruction match, and a reg-
ister designated by the second operand and a register desig-
nated by the destination register information in the first
instruction does not match.

5. The processor according to claim 1, wherein the control
unit is further constructed to control the processing such that
the data used for the processing result based on the first
instruction is stored in the register designated by the destina-
tion register information in the first instruction when the data
used for the processing based on the second instruction is not
acquired from the pipeline register, even when the instruction
acquired by the acquisition unit includes register reference
information indicating that the second instruction is the last
instruction for performing processing by using data stored in
the register designated by the destination register information
in the first instruction.

10

15

20

25

30

35

40

45

50

55

60

65

14

6. The processor according to claim 1, wherein the instruc-
tion has an operation code specifying a type of the instruction,
wherein the operation code works as the register reference
information.

7. The processor according to claim 1, wherein the control
unit is further constructed to:

control processing based on the second instruction and
control storing of a processing result based on the first
instruction such that data used for the processing based
on the second instruction is acquired from the pipeline
register and the processing result based on the first
instruction is not stored in the register designated by the
destination register information in the first instruction,
when the first and second instructions are acquired by
the acquisition unit, the second instruction indicates that
the second instruction is for performing processing by
using data stored in the register designated by the desti-
nation register information in the first instruction, and
the second instruction includes a first operation code
which indicates that the second instruction is a last
instruction for performing the processing by using data
stored in the register designated by the destination reg-
ister information in the first instruction; and

control processing based on the second instruction and
control storing of a processing result based on the first
instruction such that data used for the processing based
on the second instruction is acquired from the pipeline
register and the processing result based on the first
instruction is stored in the register designated by the
destination register information in the first instruction,
when the first and second instructions are acquired by
the acquisition unit, the second instruction indicates that
the second instruction is for performing processing by
using data stored in the register designated by the desti-
nation register information in the first instruction, and
the second instruction includes a second operation code
which indicates that the second instruction is not a last
instruction for performing the processing by using data
stored in the register designated by the destination reg-
ister information in the first instruction, wherein the first
operation code and the second operation code specify
the same type of instruction.

8. The processor according to claim 1, further comprising:

an instruction decoder constructed to decode the instruc-
tion;

an operand forwarder operatively connected to the instruc-
tion decoder and constructed to perform operand for-
warding based on whether the second instruction indi-
cates that the second instruction is for performing
processing by using data stored in the register desig-
nated by the destination register information in the first
instruction;

a cancel controller operatively connected to the operand
forwarder and constructed to control such that the pro-
cessing result based on the first instruction is not stored
in the register designated by the destination register
information in the first instruction; and

a canceller operatively connected to the cancel controller, a
pipeline register, and a register file, and constructed to
control writing data stored in the pipeline register to the
register file under control of the cancel controller.

9. A processor control method comprising steps of:

acquiring an instruction which has an operation code speci-
fying a type of the instruction and destination register
information;

storing a processing result based on the instruction in a
pipeline register;

US 9,280,345 B2

15

controlling the register to store the processing result stored
in the pipeline register, wherein the register which stores
the processing result is designated by the destination
register information; and

controlling processing based on a second instruction
acquired by the acquisition step and controlling storing
of a processing result based on a first instruction
acquired by the acquisition step, including

determining whether both of conditions (i)-(ii) are satis-
fied: (i) the second instruction indicates that the second
instruction is for performing processing by using data
stored in the register designated by the destination reg-
ister information in the first instruction, and (ii) the
operation code in the instruction acquired in the acquir-
ing step indicates that the second instruction is a last
instruction for performing the processing by using data
stored in the register designated by the destination reg-
ister information in the first instruction; and

in response to determining that both of conditions (i)-(ii)
are satisfied, controlling the processing and the storing
such that data used for the processing based on the
second instruction is acquired from the pipeline register
and the processing result based on the first instruction is
not stored in the register designated by the destination
register information in the first instruction,

wherein whether to store the processing result based on the
first instruction is determined based on an indication
associated with the second instruction.

10. The method according to claim 9, wherein the instruc-
tion acquired in the acquiring step includes an operation code
corresponding to a type of instruction, and the method further
comprises performing the processing corresponding to the
operation code included in the instruction acquired in the
acquiring step.

11. The method according to claim 9, wherein the second
instruction includes the register reference information indi-
cating that the second instruction is the last instruction for
performing the processing by using the data stored in the
register designated by the destination register information in
the first instruction.

12. The method according to claim 9, wherein first data are
acquired from the pipeline register and second data are
acquired from a register designated by the second operand in
the processing, when the second instruction includes a first
operand designating a register in which the first data used for
the processing based on the second instruction is stored, the
second instruction includes a second operand designating a
register in which the second data used for the processing
based on the second instruction is stored, a register designated
by the first operand and a register designated by the destina-
tion register information in the first instruction match, and a
register designated by the second operand and a register des-
ignated by the destination register information in the first
instruction does not match.

13. A processor that performs pipeline processing on an
instruction, the processor comprising:

an acquisition unit constructed to acquire the instruction
which has an operation code specifying a type of the
instruction and destination register information;

a pipeline register constructed to store a processing result
based on the instruction acquired by the acquisition unit;
and

a storage control unit constructed to control a register to
store the processing result stored in the pipeline register,
wherein the register which stores the processing result is
designated by the destination register information; and

10

15

20

25

30

35

40

45

55

60

65

16

a control unit constructed to control processing based on a
second instruction acquired by the acquisition unit and
control storing of a processing result based on a first
instruction acquired by the acquisition unit, wherein the
control unit is further constructed to:

determine whether both of conditions (i)-(ii) are satisfied:
(1) the second instruction indicates that the second
instruction is for performing processing by using data
stored in the register designated by the destination reg-
ister information in the first instruction, and (ii) the
operation code in the instruction acquired by the acqui-
sition unit indicates that the second instruction is a last
instruction for performing the processing by using data
stored in the register designated by the destination reg-
ister information in the first instruction; and

in response to determining that both of the conditions (i)-
(ii) are satisfied, control the processing and the storing
such that data used for the processing based on the
second instruction is acquired from the pipeline register
and the processing result based on the first instruction is
not stored in the register designated by the destination
register information in the first instruction,

wherein the control unit is further constructed to:

control processing based on the second instruction and
control storing of a processing result based on the first
instruction such that data used for the processing based
on the second instruction is acquired from the pipeline
register and the processing result based on the first
instruction is not stored in the register designated by the
destination register information in the first instruction,
when the first and second instructions are acquired by
the acquisition unit, the second instruction indicates that
the second instruction is for performing processing by
using data stored in the register designated by the desti-
nation register information in the first instruction, and
the second instruction is immediately preceded by a
third instruction which indicates that the second instruc-
tion is the last instruction for performing the processing
by using data stored in the register designated by the
destination register information in the first instruction;
and

control processing based on the second instruction and
control storing of a processing result based on the first
instruction such that data used for the processing based
on the second instruction is acquired from the pipeline
register, and the processing result based on the first
instruction is stored in the register designated by the
destination register information in the first instruction,
when the first and second instructions are acquired by
the acquisition unit, the second instruction indicates that
the second instruction is for performing processing by
using data stored in the register designated by the desti-
nation register information in the first instruction, and
the second instruction is not immediately preceded by
the third instruction.

14. A processor control method comprising steps of:

acquiring an instruction which has an operation code speci-
fying a type of the instruction and destination register
information;

storing a processing result based on the instruction in a
pipeline register;

controlling the register to store the processing result stored
in the pipeline register, wherein the register which stores
the processing result is designated by the destination
register information; and

controlling processing based on a second instruction
acquired in the acquiring step and controlling storing of

US 9,280,345 B2

17

a processing result based on a first instruction acquired
in the acquiring step, including

determining whether both of conditions (i)-(ii) are satis-

fied: (i) the second instruction indicates that the second
instruction is for performing processing by using data
stored in the register designated by the destination reg-
ister information in the first instruction, and (ii) the
operation code in the instruction acquired in the acquir-
ing step indicates that the second instruction is a last
instruction for performing the processing by using data
stored in the register designated by the destination reg-
ister information in the first instruction; and

in response to determining that both of the conditions (i)-

(ii) are satisfied, controlling the processing and the stor-
ing such that data used for the processing based on the
second instruction is acquired from the pipeline register
and the processing result based on the first instruction is
not stored in the register designated by the destination
register information in the first instruction,

wherein the controlling the register and the controlling the

processing includes:

controlling processing based on the second instruction and

controlling storing of a processing result based on the
first instruction such that data used for the processing
based on the second instruction is acquired from the
pipeline register and the processing result based on the
first instruction is not stored in the register designated by

10

15

20

18

the destination register information in the first instruc-
tion, when the first and second instructions are acquired
by the acquisition unit, the second instruction indicates
that the second instruction is for performing processing
by using data stored in the register designated by the
destination register information in the first instruction,
and the second instruction is immediately preceded by a
third instruction which indicates that the second instruc-
tion is the last instruction for performing the processing
by using data stored in the register designated by the
destination register information in the first instruction;
and

controlling processing based on the second instruction and

controlling storing of a processing result based on the
first instruction such that data used for the processing
based on the second instruction is acquired from the
pipeline register, and the processing result based on the
first instruction is stored in the register designated by the
destination register information in the first instruction,
when the first and second instructions are acquired by
the acquisition unit, the second instruction indicates that
the second instruction is for performing processing by
using data stored in the register designated by the desti-
nation register information in the first instruction, and
the second instruction is not immediately preceded by
the third instruction.

#* #* #* #* #*

